An MDE Approach for Rapid Prototyping and Implementation of Dynamic Reconfigurable Systems

Author:

Ochoa-Ruiz Gilberto1,Guillet Sébastien2,Lamotte Florent De1,Rutten Eric3,Bourennane El-Bay4,Diguet Jean-Philippe1,Gogniat Guy1

Affiliation:

1. Lab-STICC, Lorient, France

2. LIARA Laboratory, Québec, Canada

3. INRIA Rhône-Alpes, Grenoble, France

4. LE2I, Dijon, France

Abstract

This article presents a co-design methodology based on RecoMARTE, an extension to the well-known UML MARTE profile, which is used for the specification and automatic generation of Dynamic and Partially Reconfigurable Systems-on-Chip (DRSoC). This endeavor is part of a larger framework in which Model-Driven Engineering (MDE) techniques are extensively used for modeling and via model transformations, generating executable models, which are exploited by implementation tools to create reconfigurable systems. More specifically, the methodological aspects presented in this article are concerned with expediting the conception and implementation of the hardware platform and the integration of correct by construction reconfiguration controller. This article builds upon previous research by integrating previously separated endeavors to obtain a complete PR system generation chain, which aims at shielding the designer of many of the burdensome technological and tool-specific requirements. The methodology permits for the verification of the platform description at different stages in the development process (i.e., HDL for simulation, static FPGA implementation, controller simulation and verification). Furthermore, automation capabilities embedded in the flow enable the generation of the platform description and the integration of the reconfiguration controller executive seamlessly. In order to demonstrate the benefits of the proposed approach, we present a case study in which we target the creation of an image-processing application to be deployed onto an FPGA board. We present the required modeling strategies and we discuss how the generation chains are integrated with the back-end Xilinx tools (the most mature version of PR technology) to produce the necessary executable artifacts: VHDL for the platform description and a C description of the reconfiguration controller to be executed by an embedded processor.

Funder

ANR research project FAMOUS

French National Research Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3