On understanding the energy consumption of ARM-based multicore servers

Author:

Tudor Bogdan Marius1,Teo Yong Meng1

Affiliation:

1. National University of Singapore, Singapore, Singapore

Abstract

There is growing interest to replace traditional servers with low-power multicore systems such as ARM Cortex-A9. However, such systems are typically provisioned for mobile applications that have lower memory and I/O requirements than server application. Thus, the impact and extent of the imbalance between application and system resources in exploiting energy efficient execution of server workloads is unclear. This paper proposes a trace-driven analytical model for understanding the energy performance of server workloads on ARM Cortex-A9 multicore systems. Key to our approach is the modeling of the degrees of CPU core, memory and I/O resource overlap, and in estimating the number of cores and clock frequency that optimizes energy performance without compromising execution time. Since energy usage is the product of utilized power and execution time, the model first estimates the execution time of a program. CPU time, which accounts for both cores and memory response time, is modeled as an M/G/1 queuing system. Workload characterization of high performance computing, web hosting and financial computing applications shows that bursty memory traffic fits a Pareto distribution, and non-bursty memory traffic is exponentially distributed. Our analysis using these server workloads reveals that not all server workloads might benefit from higher number of cores or clock frequencies. Applying our model, we predict the configurations that increase energy efficiency by 10% without turning off cores, and up to one third with shutting down unutilized cores. For memory-bounded programs, we show that the limited memory bandwidth might increase both execution time and energy usage, to the point where energy cost might be higher than on a typical x64 multicore system. Lastly, we show that increasing memory and I/O bandwidth can improve both the execution time and the energy usage of server workloads on ARM Cortex-A9 systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference40 articles.

1. Chip maker Calxeda receives$55 million to push ARM chips into the data center Oct 2012. http://www.webcitation.org/6BSIjQzCM. Chip maker Calxeda receives$55 million to push ARM chips into the data center Oct 2012. http://www.webcitation.org/6BSIjQzCM.

2. PCWorld Magazine 2012 Reaches for the Cloud With New Prototype ARM Server

3. Google Data Center Efficiency: How We Do It Oct 2012. http://www.webcitation.org/6C8PjIMYd. Google Data Center Efficiency: How We Do It Oct 2012. http://www.webcitation.org/6C8PjIMYd.

4. Uptime Institute 2012 Survey Oct 2012. http://uptimeinstitute.com/2012-survey-results/. Uptime Institute 2012 Survey Oct 2012. http://uptimeinstitute.com/2012-survey-results/.

5. FAWN

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3