Motion planning in the presence of moving obstacles

Author:

Reif John1,Sharir Micha2

Affiliation:

1. Duke Univ., Durham, NC

2. Tel-Aviv Univ., Tel-Aviv, Israel and New York Univ., New York, NY

Abstract

This paper investigates the computational complexity of planning the motion of a body B in 2-D or 3-D space, so as to avoid collision with moving obstacles of known, easily computed, trajectories. Dynamic movement problems are of fundamental importance to robotics, but their computational complexity has not previously been investigated. We provide evidence that the 3-D dynamic movement problem is intractable even if B has only a constant number of degrees of freedom of movement. In particular, we prove the problem is PSPACE-hard if B is given a velocity modulus bound on its movements and is NP-hard even if B has no velocity modulus bound, where, in both cases, B has 6 degrees of freedom. To prove these results, we use a unique method of simulation of a Turing machine that uses time to encode configurations (whereas previous lower bound proofs in robotic motion planning used the system position to encode configurations and so required unbounded number of degrees of freedom). We also investigate a natural class of dynamic problems that we call asteroid avoidance problems : B, the object we wish to move, is a convex polyhedron that is free to move by translation with bounded velocity modulus, and the polyhedral obstacles have known translational trajectories but cannot rotate. This problem has many applications to robot, automobile, and aircraft collision avoidance. Our main positive results are polynomial time algorithms for the 2-D asteroid avoidance problem, where B is a moving polygon and we assume a constant number of obstacles, as well as single exponential time or polynomial space algorithms for the 3-D asteroid avoidance problem, where B is a convex polyhedron and there are arbitrarily many obstacles. Our techniques for solving these asteroid avoidance problems use “normal path” arguments, which are an intereting generalization of techniques previously used to solve static shortest path problems. We also give some additional positive results for various other dynamic movers problems, and in particular give polynomial time algorithms for the case in which B has no velocity bounds and the movements of obstacles are algebraic in space-time.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference22 articles.

1. The complexity of elementary algebra and geometry

2. ~ANNY J. AND REIF J. 1987. New lower bound techniques for robot motion planning problems. ~In Proceedings of the 28th IEEE S vmposmm on Foundaaons of Computer Science. IEEE New ~York pp. 49-60. ~ANNY J. AND REIF J. 1987. New lower bound techniques for robot motion planning problems. ~In Proceedings of the 28th IEEE S vmposmm on Foundaaons of Computer Science. IEEE New ~York pp. 49-60.

3. ~COOKE G. E. AND FINNEY R. R. L. 1967. Homology of Cell Complexes. Mathematical Notes ~Princeton University Press Princeton N.J. ~COOKE G. E. AND FINNEY R. R. L. 1967. Homology of Cell Complexes. Mathematical Notes ~Princeton University Press Princeton N.J.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3