Modularity-based Hypergraph Clustering: Random Hypergraph Model, Hyperedge-cluster Relation, and Computation

Author:

Feng Zijin1ORCID,Qiao Miao2ORCID,Cheng Hong1ORCID

Affiliation:

1. The Chinese University of Hong Kong, Hong Kong, Hong Kong

2. The University of Auckland, Auckland, New Zealand

Abstract

A graph models the connections among objects. One important graph analytical task is clustering which partitions a data graph into clusters with dense innercluster connections. A line of clustering maximizes a function called modularity. Modularity-based clustering is widely adopted on dyadic graphs due to its scalability and clustering quality which depends highly on its selection of a random graph model. The random graph model decides not only which clustering is preferred - modularity measures the quality of a clustering based on its alignment to the edges of a random graph, but also the cost of computing such an alignment. Existing random hypergraph models either measure the hyperedge-cluster alignment in an All-Or-Nothing (AON) manner, losing important group-wise information, or introduce expensive alignment computation, refraining the clustering from scaling up. This paper proposes a new random hypergraph model called Hyperedge Expansion Model (HEM), a non-AON hypergraph modularity function called Partial Innerclusteredge modularity (PI) based on HEM, a clustering algorithm called Partial Innerclusteredge Clustering (PIC) that optimizes PI, and novel computation optimizations. PIC is a scalable modularity-based hypergraph clustering that can effectively capture the non-AON hyperedge-cluster relation. Our experiments show that PIC outperforms eight state-of-the-art methods on real-world hypergraphs in terms of both clustering quality and scalability and is up to five orders of magnitude faster than the baseline methods.

Funder

Marsden Fund

National Natural Science Foundation of China

The Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong

Ministry of Business, Innovation and Employment, New Zealand

Research Grants Council, University Grants Committee, Hong Kong

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3