Weighted Aggregate Reverse Rank Queries

Author:

Dong Yuyang1,Chen Hanxiong1,Yu Jeffrey Xu2,Furuse Kazutaka1,Kitagawa Hiroyuki1

Affiliation:

1. University of Tsukuba, Japan

2. The Chinese University of Hong Kong, China

Abstract

In marketing, helping manufacturers to find the matching preferences of potential customers for their products is an essential work, especially in e-commerce analyzing with big data. The aggregate reverse rank query has been proposed to return top- k customers who have more potential to buy a given product bundling than other customers, where the potential is evaluated by the aggregate rank, which is defined as the sum of each product’s rank. This query correctly reflects the request only when the customers consider the products in the product bundling equally. Unfortunately, rather than thinking products equally, in most cases, people buy a product bundling because they appreciate a special part of the bundling. Manufacturers, such as video games companies and cable television industries, are also willing to bundle some attractive products with less popular products for the purpose of maximum benefits or inventory liquidation. Inspired by the necessity of general aggregate reverse rank query for unequal thinking, we propose a weighted aggregate reverse rank query, which treats the elements in product bundling with different weights to target customers from all aspects of thought. To solve this query efficiently, we first try a straightforward extension. Then, we rebuild the bound-and-filter framework for the weighted aggregate reverse rank query. We prove, theoretically, that the new approach finds the optimal bounds, and we develop the highly efficient algorithm based on these bounds. The theoretical analysis and experimental results demonstrated the efficacy of the proposed methods.

Funder

“Research and Development on Real World Big Data Integration and Analysis” of RIKEN, Japan

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Balanced Nearest Neighborhood Query in Spatial Database;2019 IEEE International Conference on Big Data and Smart Computing (BigComp);2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3