Stochastic Optimization and Learning for Two-Stage Supplier Problems

Author:

Brubach Brian1ORCID,Grammel Nathaniel2ORCID,Harris David G.2ORCID,Srinivasan Aravind2ORCID,Tsepenekas Leonidas3ORCID,Vullikanti Anil4ORCID

Affiliation:

1. Wellesley College, USA

2. University of Maryland, College Park, USA

3. AI Research, JPMorgan Chase, USA

4. University of Virginia, USA

Abstract

The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. In addition to the standard (homogeneous) setting where all clients must be within a distance \(R\) of the nearest facility, we provide results for the more general problem where the radius demands may be inhomogeneous (i.e., different for each client). We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints, and provide results for these settings. We derive results for the most general distributional setting, where there is only black-box access to the underlying distribution. To accomplish this, we first develop algorithms for the polynomial scenarios setting; we then employ a novel scenario-discarding variant of the standard Sample Average Approximation (SAA) method, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary in order to optimize over the radius.

Publisher

Association for Computing Machinery (ACM)

Reference28 articles.

1. Shipra Agrawal Amin Saberi and Yinyu Ye. 2008. Stochastic combinatorial optimization under probabilistic constraints. (2008). arXiv:0809.0460 [cs.DS].

2. The Probabilistic Method

3. Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani. 2021. Revisiting priority :-center: fairness and outliers. In Proc. 48th International Colloquium on Automata, Languages, and Programming (ICALP). Vol. 198, 21.

4. On minimizing a convex function subject to linear inequalities;Beale E. M. L.;Journal of the Royal Statistical Society. Series B (Methodological),1955

5. Where to locate covid-19 mass vaccination facilities;Bertsimas Dimitris;Naval Research Logistics (NRL),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3