Hardware Context Switch-based Cryptographic Accelerator for Handling Multiple Streams

Author:

Sasongko Arif1ORCID,Kumara I. M. Narendra1,Wicaksana Arief2ORCID,Rousseau Frédéric2,Muller Olivier2

Affiliation:

1. Institut Teknologi Bandung, Bandung, Indonesia

2. Univ. Grenoble Alpes, Grenoble, France

Abstract

The confidentiality and integrity of a stream has become one of the biggest issues in telecommunication. The best available algorithm handling the confidentiality of a data stream is the symmetric key block cipher combined with a chaining mode of operation such as cipher block chaining (CBC) or counter mode (CTR). This scheme is difficult to accelerate using hardware when multiple streams coexist. This is caused by the computation time requirement and mainly by management of the streams. In most accelerators, computation is treated at the block-level rather than as a stream, making the management of multiple streams complex. This article presents a solution combining CBC and CTR modes of operation with a hardware context switching. The hardware context switching allows the accelerator to treat the data as a stream. Each stream can have different parameters: key, initialization value, state of counter. Stream switching was managed by the hardware context switching mechanism. A high-level synthesis tool was used to generate the context switching circuit. The scheme was tested on three cryptographic algorithms: AES, DES, and BC3. The hardware context switching allowed the software to manage multiple streams easily, efficiently, and rapidly. The software was freed of the task of managing the stream state. Compared to the original algorithm, about 18%–38% additional logic elements were required to implement the CBC or CTR mode and the additional circuits to support context switching. Using this method, the performance overhead when treating multiple streams was low, and the performance was comparable to that of existing hardware accelerators not supporting multiple streams.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference39 articles.

1. American Bankers Association et al. 1985. American National Standard for Financial Institution Key Management (Wholesale). American Bankers Association et al. 1985. American National Standard for Financial Institution Key Management (Wholesale).

2. An embedded memory-centric reconfigurable hardware accelerator for security applications;Babecki Christopher;IEEE Trans. Comput.,2015

3. Generating Efficient Context-Switch Capable Circuits through Autonomous Design Flow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMCRYPTO: An In-Memory Computing Fabric for AES Encryption and Decryption;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3