Trading Throughput for Freshness: Freshness-aware Traffic Engineering and In-Network Freshness Control

Author:

Tseng Shih-hao1ORCID,Han Soojean1ORCID,Wierman Adam1ORCID

Affiliation:

1. California Institute of Technology, Pasadena, California, USA

Abstract

With the advent of the Internet of Things (IoT), applications are becoming increasingly dependent on networks to not only transmit content at high throughput but also deliver it when it is fresh , i.e., synchronized between source and destination. Existing studies have proposed the metric age of information (AoI) to quantify freshness and have system designs that achieve low AoI. However, despite active research in this area, existing results are not applicable to general wired networks for two reasons. First, they focus on wireless settings, where AoI is mostly affected by interference and collision, while queueing issues are more prevalent in wired settings. Second, traditional high-throughput/low-latency legacy drop-adverse (LDA) flows are not taken into account in most system designs; hence, the problem of scheduling mixed flows with distinct performance objectives is not addressed. In this article, we propose a hierarchical system design to treat wired networks shared by mixed flow traffic, specifically LDA and AoI flows, and study the characteristics of achieving a good tradeoff between throughput and AoI. Our approach to the problem consists of two layers: freshness-aware traffic engineering (FATE) and in-network freshness control (IFC) . The centralized FATE solution studies the characteristics of the source flow to derive the sending rate/update frequency for flows via the optimization problem LDA-AoI Coscheduling . The parameters specified by FATE are then distributed to IFC, which is implemented at each outport of the network’s nodes and used for efficient scheduling between LDA and AoI flows. We present a Linux implementation of IFC and demonstrate the effectiveness of FATE/IFC through extensive emulations. Our results show that it is possible to trade a little throughput (5% lower) for much shorter AoI (49% to 71% shorter) compared to state-of-the-art traffic engineering.

Funder

National Science Foundation Graduate Research Fellowship

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Reference85 articles.

1. DARPA Subterranean (SubT) Challenge. Retrieved from https://www.subtchallenge.com/.Accessed: 2020-02-20.

2. Data Plane Development Kit. Retrieved from http://dpdk.org.

3. Facebook Live. Retrieved from https://live.fb.com.

4. Google Stadia. Retrieved from https://store.google.com/magazine/stadia.Cloud gaming platform.

5. Mininet. Retrieved from http://mininet.org/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3