Topic-aware Masked Attentive Network for Information Cascade Prediction

Author:

Tai Yu1ORCID,Yang Hongwei1ORCID,He Hui1ORCID,Wu Xinglong1ORCID,Shao Yuanming1ORCID,Zhang Weizhe1ORCID,Sangaiah Arun Kumar2ORCID

Affiliation:

1. School of Cyberspace Science, Harbin Institute of Technology, Harbin, China

2. National Yunlin University of Science and Technology, Taiwan, China and Lebanese American University, Beirut, Lebanon

Abstract

Predicting information cascades holds significant practical implications, including applications in public opinion analysis, rumor control, and product recommendation. Existing approaches have generally overlooked the significance of semantic topics in information cascades or disregarded the dissemination relations. Such models are inadequate in capturing the intricate diffusion process within an information network inundated with diverse topics. To address such problems, we propose a neural-based model using Topic-Aware Masked Attentive Network for Information Cascade Prediction (ICP-TMAN) to predict the next infected node of an information cascade. First, we encode the topical text into user representation to perceive the user-topic dependency. Next, we employ a masked attentive network to devise the diffusion context to capture the user-context dependency. Finally, we exploit a deep attention mechanism to model historical infected nodes for user embedding enhancement to capture user-history dependency. The results of extensive experiments conducted on three real-world datasets demonstrate the superiority of ICP-TMAN over existing state-of-the-art approaches.

Funder

Joint Funds of the National Natural Science Foundation of China

National Key Research and Development Program of China

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference59 articles.

1. Nonbacktracking bounds on the influence in independent cascade models;Abbe Emmanuel;Advances in Neural Information Processing Systems,2017

2. On the current state of deep learning for news recommendation;Amir Nabila;Artif. Intell. Rev.,2023

3. Akshay Aravamudan, Xi Zhang, and Georgios C. Anagnostopoulos. 2023. Anytime user engagement prediction in information cascades for arbitrary observation periods. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 4999–5009.

4. Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. 2023. Predicting tweet engagement with graph neural networks. In Proceedings of the ACM International Conference on Multimedia Retrieval. 172–180.

5. GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays;Avilés-Rivero Angelica I.;Pattern Recogn.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3