High Fidelity Makeup via 2D and 3D Identity Preservation Net

Author:

Liu Jinliang1ORCID,Zheng Zhedong2ORCID,Yang Zongxin3ORCID,Yang Yi3ORCID

Affiliation:

1. University of Technology Sydney, Broadway, Australia

2. University of Macau, Taipa, China

3. Zhejiang University, Hangzhou, China

Abstract

In this article, we address the challenging makeup transfer task, aiming to transfer makeup from a reference image to a source image while preserving facial geometry and background consistency. Existing deep neural network-based methods have shown promising results in aligning facial parts and transferring makeup textures. However, they often neglect the facial geometry of the source image, leading to two adverse effects: (1) alterations in geometrically relevant facial features, causing face flattening and loss of personality, and (2) difficulties in maintaining background consistency, as networks cannot clearly determine the face-background boundary. To jointly tackle these issues, we propose the High Fidelity Makeup via two-dimensional (2D) and 3D Identity Preservation Network (IP23-Net), to the best of our knowledge, a novel framework that leverages facial geometry information to generate more realistic results. Our method comprises a 3D Shape Identity Encoder, which extracts identity and 3D shape features. We incorporate a 3D face reconstruction model to ensure the three-dimensional effect of face makeup, thereby preserving the characters’ depth and natural appearance. To preserve background consistency, our Background Correction Decoder automatically predicts an adaptive mask for the source image, distinguishing the foreground and background. In addition to popular benchmarks, we introduce a new large-scale High Resolution Synthetic Makeup Dataset containing 335,230 diverse high-resolution face images to evaluate our method’s generalization ability. Experiments demonstrate that IP23-Net achieves high-fidelity makeup transfer while effectively preserving background consistency. The code will be made publicly available.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3