Affiliation:
1. Beijing Institute of Technology, Beijing, China
2. Tencent Technology (Shenzhen) Company Limited, Shenzhen, China
Abstract
Finding cohesive subgraphs from a bipartite graph is a fundamental operator in bipartite graph analysis. In this paper, we focus on the problem of mining cohesive subgraphs from a bipartite graph that satisfy a hereditary property. Here a cohesive subgraph meets the hereditary property if all of its subgraphs satisfy the same property as itself. We show that several important cohesive subgraph models, such as maximal biclique and maximal k-biplex, satisfy the hereditary property. The problem of enumerating all maximal hereditary subgraphs was known to be NP-hard. To solve this problem, we first propose a novel and general pivot-based enumeration framework to efficiently enumerate all maximal hereditary subgraphs in a bipartite graph. Then, based on our general framework, we develop a new pivot-based algorithm with several pruning techniques to enumerate all maximal bicliques. We prove that the worst-case time complexity of our pivot-based maximal biclique enumeration algorithm is O(m x 2n/2 ) (or O(m\times 1.414^n)) which is near optimal since there exist up to O(2n/2 ) maximal bicliques in a bipartite graph with n vertices and m edges. Moreover, we also show that our algorithm can achieve polynomial-delay time complexity with a slight modification. Third, on the basis of our general framework, we also devise a novel pivot-based algorithm with several non-trivial pruning techniques to enumerate maximal k-biplexes in a bipartite graph. Finally, we conduct extensive experiments using 11 real-world bipartite graphs to evaluate the proposed algorithms. The results show that our pivot-based solutions can achieve one order of magnitude (three orders of magnitude) faster than the state-of-the-art maximal biclique enumeration algorithms (maximal k-biplex enumeration algorithms).
Funder
National Key Research and Development Program of China
NSFC Grants
CCF-Huawei Populus Grove Fund
Publisher
Association for Computing Machinery (ACM)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient Maximal Biplex Enumerations with Improved Worst-Case Time Guarantee;Proceedings of the ACM on Management of Data;2024-05-29
2. On Searching Maximum Directed $(k, \ell)$-Plex;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13
3. Maximum k-Plex Computation: Theory and Practice;Proceedings of the ACM on Management of Data;2024-03-12