INCEPT: A Framework for Duplicate Posts Classification with Combined Text Representations

Author:

Skenderi Erjon1ORCID,Huhtamäki Jukka2ORCID,Laaksonen Salla-Maaria3ORCID,Stefanidis Kostas2ORCID

Affiliation:

1. Tampere University, Tampere, Finland and University of Helsinki, Helsinki, Finland

2. Tampere University, Tampere, Finland

3. University of Helsinki, Helsinki, Finland

Abstract

Dealing with many of the problems related to the quality of textual content online involves identifying similar content. Algorithmic solutions for duplicate content classification typically rely on text vector representation, which maps textual information into a set of features. Ideally, this representation would capture all aspects of the underlying text, including length, word frequencies, syntax, and semantics. While recent advancements in text representation have led to improved performance, a comprehensive approach that explicitly incorporates all text features has not yet been proposed. In this study, we present the INCEPT framework that utilizes multiple representation methods to detect duplicate text pairs, taking advantage of their individual strengths. The core of our approach involves using a stacking ensemble of pairwise vector distance measurements that are computed from multiple text representation methods. A stacking classifier then utilizes these distance scores as input and learns to identify duplicate posts. We assess the proposed framework’s effectiveness in identifying duplicate posts in an online Question and Answer platform. By combining several text representation methods, INCEPT performs well in the duplicate posts classification task. Our experiments demonstrate that specific framework configurations outperform the accuracy scores obtained from individual text representation methods. Therefore, we also infer that no single text representation method can independently capture a text’s features.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3