1. Taqi, A. M., Al-Azzo, F., Mariofanna, M., and Al-Saadi, J. M. 2017. Classification and discrimination of focal and non-focal EEG signals based on deep neural network. In Current Research in Computer Science and Information Technology. (Sulaymaniyah KRG, Iraq, April 26-27, 2017), IEEE, 86--92. DOI= https://ieeexplore.ieee.org/abstract/document/7965539.
2. Croft, R. J., and Barry, R. J. 1998. 346 Multi-channel eog correction of the EEG: Choosing an appropriate regression method. International Journal of Psychophysiology. 30, 1-2 (Sept, 1998), 134. DOI= https://www.infona.pl/resource/bwmeta1.element.elsevier-f88885be-66fe-3fae-9113-6f5760570939.
3. Turnip, A., Kusumandari, D. E., Fakhurroja, H., Simbolon, A. I., Hidayat, T., and Sihombing, P. 2017. Artifacts Reduction of EEG-SSVEP Signals for Emotion Detection with Robust Principal Component Analysis. In Proceedings of the International Conference on Imaging, Signal Processing and Communication (Penang, Malaysia, July 26-27, 2017), ACM, 94--99. DOI= https://dl.acm.org/citation.cfm?id=3132312.
4. Akhtar, M. T., Mitsuhashi, W., and James, C. J. 2012. Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal processing. 92, 2 (Feb. 2012) 401--416. DOI= https://www.sciencedirect.com/science/article/pii/S0165168411002623.
5. Stam, C. J. 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical neurophysiology. 116, 10 (Oct. 2005) 2266--2301. DOI= https://www.sciencedirect.com/science/article/pii/S1388245705002403.