New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts

Author:

Čadík Martin1,Herzog Robert1,Mantiuk Rafał2,Myszkowski Karol1,Seidel Hans-Peter1

Affiliation:

1. MPI Informatik Saarbrücken, Germany

2. Bangor University, United Kingdom

Abstract

Reliable detection of global illumination and rendering artifacts in the form of localized distortion maps is important for many graphics applications. Although many quality metrics have been developed for this task, they are often tuned for compression/transmission artifacts and have not been evaluated in the context of synthetic CG-images. In this work, we run two experiments where observers use a brush-painting interface to directly mark image regions with noticeable/objectionable distortions in the presence/absence of a high-quality reference image, respectively. The collected data shows a relatively high correlation between the with-reference and no-reference observer markings. Also, our demanding per-pixel image-quality datasets reveal weaknesses of both simple (PSNR, MSE, sCIE-Lab) and advanced (SSIM, MS-SSIM, HDR-VDP-2) quality metrics. The most problematic are excessive sensitivity to brightness and contrast changes, the calibration for near visibility-threshold distortions, lack of discrimination between plausible/implausible illumination, and poor spatial localization of distortions for multi-scale metrics. We believe that our datasets have further potential in improving existing quality metrics, but also in analyzing the saliency of rendering distortions, and investigating visual equivalence given our with- and no-reference data.

Funder

European Cooperation in Science and Technology

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3