A LAPACK Implementation of the Dynamic Mode Decomposition

Author:

Drmač Zlatko1ORCID

Affiliation:

1. Faculty of Science, University of Zagreb, Zagreb, Croatia

Abstract

The Dynamic Mode Decomposition (DMD) is a method for computational analysis of nonlinear dynamical systems in data driven scenarios. Based on high fidelity numerical simulations or experimental data, the DMD can be used to reveal the latent structures in the dynamics or as a forecasting or a model order reduction tool. The theoretical underpinning of the DMD is the Koopman operator on a Hilbert space of observables of the dynamics under study. This paper describes a numerically robust and versatile variant of the DMD and its implementation using the state-of-the-art dense numerical linear algebra software package LAPACK . The features of the proposed software solution include residual bounds for the computed eigenpairs of the DMD matrix, eigenvectors refinements and computation of the eigenvectors of the Exact DMD, compressed DMD for efficient analysis of high dimensional problems that can be easily adapted for fast updates in a streaming DMD. Numerical analysis is the bedrock of numerical robustness and reliability of the software, that is tested following the highest standards and practices of LAPACK . Important numerical topics are discussed in detail and illustrated using numerous numerical examples.

Funder

DARPA Small Business Innovation Research Program (SBIR) Program Office

DARPA PAI project “Physics-Informed Machine Learning Methodologies

DARPA MoDyL project “A Data-Driven, Operator-Theoretic Framework for Space-Time Analysis of Process Dynamics”

Publisher

Association for Computing Machinery (ACM)

Reference67 articles.

1. A. Abdelfattah, H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, S. Wood, P. Wu, I. Yamazaki, and A. Yarkhan. 2017. Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale. SLATE Working Notes 01, ICL-UT-17-02.

2. Dynamic Mode Decomposition and Its Application in Various Domains: An Overview

3. Deep learning enhanced dynamic mode decomposition

4. Nonlinear Model Order Reduction via Dynamic Mode Decomposition

5. S. Anantharamu and K. Mahesh. 2018. A parallel Dynamic Mode Decomposition algorithm using modified Full Orthogonalization Arnoldi for large sequential snapshots. (05 2018). DOI:10.13140/RG.2.2.13624.85764

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hermitian Dynamic Mode Decomposition - Numerical Analysis and Software Solution;ACM Transactions on Mathematical Software;2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3