Optimal Checkpointing Strategy for Real-time Systems with Both Logical and Timing Correctness

Author:

Zhang Lin1ORCID,Wang Zifan1ORCID,Kong Fanxin1ORCID

Affiliation:

1. Syracuse University, USA

Abstract

Real-time systems are susceptible to adversarial factors such as faults and attacks, leading to severe consequences. This paper presents an optimal checkpoint scheme to bolster fault resilience in real-time systems, addressing both logical consistency and timing correctness. First, we partition message-passing processes into a directed acyclic graph (DAG) based on their dependencies, ensuring checkpoint logical consistency. Then, we identify the DAG’s critical path, representing the longest sequential path, and analyze the optimal checkpoint strategy along this path to minimize overall execution time, including checkpointing overhead. Upon fault detection, the system rolls back to the nearest valid checkpoints for recovery. Our algorithm derives the optimal checkpoint count and intervals, and we evaluate its performance through extensive simulations and a case study. Results show a 99.97% and 67.86% reduction in execution time compared to checkpoint-free systems in simulations and the case study, respectively. Moreover, our proposed strategy outperforms prior work and baseline methods, increasing deadline achievement rates by 31.41% and 2.92% for small-scale tasks and 78.53% and 4.15% for large-scale tasks.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3