Autotuning of OpenCL Kernels with Global Optimizations

Author:

Filipovič Jiří1,Petrovič Filip2,Benkner Siegfried3

Affiliation:

1. Masaryk University, University of Vienna

2. Masaryk University

3. University of Vienna

Publisher

ACM Press

Reference21 articles.

1. E. Bajrovic and S. Benkner. Automatic performance tuning of pipeline patterns for heterogeneous parallel architectures. In 2014 International Conference on Parallel and Distributed Processing, Techniques and Applications, 2014.

2. E. Bajrovic, Mijakovic R., J. Dokulil, S. Benkner, and M. Gerndt. Tuning OpenCL applications with the periscope tuning framework. In 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016.

3. J. Enmyren, U. Dastgeer, and C. W. Kessler. Towards a tunable multi-backend skeleton programming framework for multi-GPU systems. In MCC-3: Swedish Woekshop on Multicore Computing, 2010.

4. T. L. Falch and A. C. Elster. Machine learning based auto-tuning for enhanced OpenCL performance portability. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, 2015.

5. J. Filipovič, M. Madzin, J. Fousek, and L. Matyska. Optimizing CUDA code by kernel fusion: application on BLAS. The Journal of Supercomputing, 2015.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bringing Auto-Tuning to HIP: Analysis of Tuning Impact and Difficulty on AMD and Nvidia GPUs;Lecture Notes in Computer Science;2024

2. Kernel Launcher: C++ Library for Optimal-Performance Portable CUDA Applications;2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2023-05

3. Towards a Benchmarking Suite for Kernel Tuners;2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2023-05

4. Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning;2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS);2022-11

5. Predicting number of threads using balanced datasets for openMP regions;Computing;2022-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3