Compatible Branch Coverage Driven Symbolic Execution for Efficient Bug Finding

Author:

Yi Qiuping1ORCID,Yu Yifan1ORCID,Yang Guowei2ORCID

Affiliation:

1. Beijing University of Posts and Telecommunications, Beijing, China

2. The University of Queensland, Brisbane, Australia

Abstract

Symbolic execution is a powerful technique for bug finding by generating test inputs to systematically explore all feasible paths within a given threshold. However, its practical usage is often limited by the path explosion problem. In this paper, we propose compatible branch coverage driven symbolic execution for efficient bug finding. Our new technique owns a novel path-pruning strategy obtained from program dependency analysis to effectively avoid unnecessary explorations. Specifically, based on a Compatible Branch Set , our technique directs symbolic execution to explore feasible branches while soundly pruning redundant paths that have no new contributions to branch coverage. We have implemented our approach atop KLEE and conducted experiments on a set of programs from Siemens Suite, GNU Coreutils, and other real-world programs. Experimental results show that, compared with the state-of-the-art symbolic execution techniques, our approach always uses significantly less time to reproduce bugs while achieving the same or better branch coverage. On average, our approach got over 45% path reduction and 3x speedup on the GNU Coreutils programs.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3