Contextual Ranking and Selection with Gaussian Processes and OCBA

Author:

Cakmak Sait1,Wang Yuhao1,Gao Siyang2,Zhou Enlu1

Affiliation:

1. Georgia Institute of Technology School of Industrial and Systems Engineering, USA

2. City University of Hong Kong Department of Advanced Design and Systems Engineering, China

Abstract

In many real world problems, we are faced with the problem of selecting the best among a finite number of alternatives, where the best alternative is determined based on context specific information. In this work, we study the contextual Ranking and Selection problem under a finite-alternative-finite-context setting, where we aim to find the best alternative for each context. We use a separate Gaussian process to model the reward for each alternative, and derive the large deviations rate function for both the expected and worst-case contextual probability of correct selection. We propose the GP-C-OCBA sampling policy, which uses the Gaussian process posterior to iteratively allocate observations to maximize the rate function. We prove its consistency and show that it achieves the optimal convergence rate under the assumption of a non-informative prior. Numerical experiments show that our algorithm is highly competitive in terms of sampling efficiency, while having significantly smaller computational overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference30 articles.

1. Maximilian Balandat , Brian Karrer , Daniel  R. Jiang , Samuel Daulton , Benjamin Letham , Andrew Gordon Wilson , and Eytan Bakshy . 2020. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization . In Advances in Neural Information Processing Systems 33. Curran Associates , Inc., Red Hook, NY , 21524–21538. Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33. Curran Associates, Inc., Red Hook, NY, 21524–21538.

2. Chun-Hung Chen , Stephen  E. Chick , Loo Hay Lee , and Nugroho  A. Pujowidianto . 2015. Ranking and Selection: Efficient Simulation Budget Allocation . In Handbook of Simulation Optimization, Michael C Fu (Ed.) . Springer , New York, NY , 45–80. Chun-Hung Chen, Stephen E. Chick, Loo Hay Lee, and Nugroho A. Pujowidianto. 2015. Ranking and Selection: Efficient Simulation Budget Allocation. In Handbook of Simulation Optimization, Michael C Fu (Ed.). Springer, New York, NY, 45–80.

3. Stochastic Simulation Optimization

4. Complete expected improvement converges to an optimal budget allocation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3