Pattern-based Interactive Configuration Derivation for Cyber-physical System Product Lines

Author:

Lu Hong1,Yue Tao2ORCID,Ali Shaukat1

Affiliation:

1. Simula Research Laboratory, Fornebu, Norway

2. Simula Research Laboratory and Nanjing University of Aeronautics and Astronautics, Fornebu, Norway

Abstract

Deriving a Cyber-Physical System (CPS) product from a product line requires configuring hundreds to thousands of configurable parameters of components and devices from multiple domains, e.g., computing, control, and communication. A fully automated configuration process for a CPS product line is seldom possible in practice, and a dynamic and interactive process is expected. Therefore, some configurable parameters are to be configured manually, and the rest can be configured either automatically or manually, depending on pre-defined constraints, the order of configuration steps, and previous configuration data in such a dynamic and interactive configuration process. In this article, we propose a pattern-based, interactive configuration derivation methodology (named as Pi-CD) to maximize opportunities of automatically deriving correct configurations of CPSs by benefiting from pre-defined constraints and configuration data of previous configuration steps. Pi-CD requires architectures of CPS product lines modeled with Unified Modeling Language extended with four types of variabilities, along with constraints specified in Object Constraint Language (OCL). Pi-CD is equipped with 324 configuration derivation patterns that we defined by systematically analyzing the OCL constructs and semantics. We evaluated Pi-CD by configuring 20 CPS products of varying complexity from two real-world CPS product lines. Results show that Pi-CD can achieve up to 72% automation degree with a negligible time cost. Moreover, its time performance remains stable with the increase in the number of configuration parameters as well as constraints.

Funder

Research Council of Norway under the FRIPRO program

Co-evolver project

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method for Feature Subset Selection in Software Product Lines;International Journal of Software Innovation;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3