Certain and Approximately Certain Models for Statistical Learning

Author:

Zhen Cheng1ORCID,Aryal Nischal1ORCID,Termehchy Arash1ORCID,Chabada Amandeep Singh1ORCID

Affiliation:

1. Oregon State University, Corvallis, USA

Abstract

Real-world data is often incomplete and contains missing values. To train accurate models over real-world datasets, users need to spend a substantial amount of time and resources imputing and finding proper values for missing data items. In this paper, we demonstrate that it is possible to learn accurate models directly from data with missing values for certain training data and target models. We propose a unified approach for checking the necessity of data imputation to learn accurate models across various widely-used machine learning paradigms. We build efficient algorithms with theoretical guarantees to check this necessity and return accurate models in cases where imputation is unnecessary. Our extensive experiments indicate that our proposed algorithms significantly reduce the amount of time and effort needed for data imputation without imposing considerable computational overhead.

Funder

NSF grant and the Industry-University Cooperative Research Center on Pervasive Personalized Intelligence

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. 2023. COVID-19 Reported Patient Impact and Hospital Capacity. https://catalog.data.gov/dataset/covid-19-reportedpatient-impact-and-hospital-capacity-by-state-timeseries-cf58c. Accessed on 01-01--2024.

2. Peter Bodik Wei Hong Carlos Guestrin Sam Madden Mark Paskin and Romain Thibaux. 2004. Intel Berkley Research Lab Data. https://db.csail.mit.edu/labdata/labdata.html

3. Parthajit Borah, DK Bhattacharyya, and JK Kalita. 2020. Malware Dataset Generation and Evaluation. In 2020 IEEE 4th Conference on Information and Communication Technology (CICT). IEEE, 1--6.

4. Yuri Burda Roger Grosse and Ruslan Salakhutdinov. 2016. Importance Weighted Autoencoders. arXiv:1509.00519 [cs.LG]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3