Dual Homogeneity Hypergraph Motifs with Cross-view Contrastive Learning for Multiple Social Recommendations

Author:

Han Jiadi1ORCID,Tang Yufei2ORCID,Tao Qian3ORCID,Xia Yuhan1ORCID,Zhang Liming4ORCID

Affiliation:

1. South China University of Technology, Guangzhou, China

2. Florida Atlantic University, Boca Raton, USA

3. South China University of Technology, Guangzhou, China and Pazhou Lab, Guangzhou, China

4. North China University of Technology, Beijing, China

Abstract

Social relations are often used as auxiliary information to address data sparsity and cold-start issues in social recommendations. In the real world, social relations among users are complex and diverse. Widely used graph neural networks (GNNs) can only model pairwise node relationships and are not conducive to exploring higher-order connectivity, while hypergraph provides a natural way to model high-order relations between nodes. However, recent studies show that social recommendations still face the following challenges: 1) a majority of social recommendations ignore the impact of multifaceted social relationships on user preferences; 2) the item homogeneity is often neglected, mainly referring to items with similar static attributes have similar attractiveness when exposed to users that indicating hidden links between items; and 3) directly combining the representations learned from different independent views cannot fully exploit the potential connections between different views. To address these challenges, in this article, we propose a novel method DH-HGCN++ for multiple social recommendations. Specifically, dual homogeneity (i.e., social homogeneity and item homogeneity) is introduced to mine the impact of diverse social relations on user preferences and enrich item representations. Hypergraph convolution networks with motifs are further exploited to model the high-order relations between nodes. Finally, cross-view contrastive learning is proposed as an auxiliary task to jointly optimize the DH-HGCN++. Real-world datasets are used to validate the effectiveness of the proposed model, where we use sentiment analysis to extract comment relations and employ the k-means clustering algorithm to construct the item-item correlation graph. Experiment results demonstrate that our proposed method consistently outperforms the state-of-the-art baselines on Top-N recommendations.

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Music recommendation by unified hypergraph

2. Heterogeneous Graph Contrastive Learning Network for Personalized Micro-video Recommendation

3. Bipartite Graph Embedding via Mutual Information Maximization

4. Proceedings of Machine Learning Research;Chen Ting,2020

5. Neural feature-aware recommendation with signed hypergraph convolutional network;Chen Xu;ACM Transactions on Information Systems,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure Cryptographic Technology Framework for Data Element Circulation Transactions;2024 IEEE 11th International Conference on Cyber Security and Cloud Computing (CSCloud);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3