Affiliation:
1. Simula Research Laboratory and University of Luxembourg, Lysaker, Norway
2. University of Luxembourg, Luxembourg
3. Simula Research Laboratory, Lysaker, Norway
Abstract
Tasks in real-time embedded systems (RTES) are often subject to hard deadlines that constrain how quickly the system must react to external inputs. These inputs and their timing vary in a large domain depending on the environment state and can never be fully predicted prior to system execution. Therefore, approaches for stress testing must be developed to uncover possible deadline misses of tasks for different input arrival times. In this article, we describe stress-test case generation as a search problem over the space of task arrival times. Specifically, we search for worst-case scenarios maximizing deadline misses, where each scenario characterizes a test case. In order to scale our search to large industrial-size problems, we combine two state-of-the-art search strategies, namely, genetic algorithms (GA) and constraint programming (CP). Our experimental results show that, in comparison with GA and CP in isolation, GA+CP achieves nearly the same effectiveness as CP and the same efficiency and solution diversity as GA, thus combining the advantages of the two strategies. In light of these results, we conclude that a combined GA+CP approach to stress testing is more likely to scale to large and complex systems.
Funder
Research Council of Norway
National Research Fund, Luxembourg
Publisher
Association for Computing Machinery (ACM)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献