Affiliation:
1. Stanford University, Stanford, CA
Abstract
The notion of similarity between objects finds use in many contexts, for example, in search engines, collaborative filtering, and clustering. Objects being compared often are modeled as sets, with their similarity traditionally determined based on set intersection. Intersection-based measures do not accurately capture similarity in certain domains, such as when the data is sparse or when there are known relationships between items within sets. We propose new measures that exploit a hierarchical domain structure in order to produce more intuitive similarity scores. We extend our similarity measures to provide appropriate results in the presence of multisets (also handled unsatisfactorily by traditional measures), for example, to correctly compute the similarity between customers who buy several instances of the same product (say milk), or who buy several products in the same category (say dairy products). We also provide an experimental comparison of our measures against traditional similarity measures, and report on a user study that evaluated how well our measures match human intuition.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Reference42 articles.
1. Approximate query processing using wavelets;Chakrabarti K.;Proceedings of VLDB,2000
Cited by
182 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献