Byzantine Machine Learning: A Primer

Author:

Guerraoui Rachid1,Gupta Nirupam1,Pinot Rafael1

Affiliation:

1. École polytechnique fédérale de Lausanne, Switzerland

Abstract

The problem of Byzantine resilience in distributed machine learning, a.k.a., Byzantine machine learning , consists in designing distributed algorithms that can train an accurate model despite the presence of Byzantine nodes, i.e., nodes with corrupt data or machines that can misbehave arbitrarily. By now, many solutions to this important problem have been proposed, most of which build upon the classical stochastic gradient descent (SGD) scheme. Yet, the literature lacks a unified structure of this emerging field. Consequently, the general understanding on the principles of Byzantine machine learning remains poor. This paper addresses this issue by presenting a primer on Byzantine machine learning. In particular, we introduce three pillars of Byzantine machine learning, namely the concepts of breakdown point , robustness and gradient complexity , to curate the efficacy of a solution. The introduced systematization enables us to (i) bring forth the merits and limitations of the state-of-the-art solutions, and (ii) pave a clear path for future advancements in this field.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference223 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

2. Toward an internet of battlefield things: A resilience perspective;Abdelzaher Tarek;Computer,2018

3. Yaser S Abu-Mostafa Malik Magdon-Ismail and Hsuan-Tien Lin. 2012. Learning from data. Vol.  4. AMLBook New York. Yaser S Abu-Mostafa Malik Magdon-Ismail and Hsuan-Tien Lin. 2012. Learning from data. Vol.  4. AMLBook New York.

4. Anish Acharya , Abolfazl Hashemi , Prateek Jain , Sujay Sanghavi , Inderjit  S. Dhillon , and Ufuk Topcu . 2022 . Robust Training in High Dimensions via Block Coordinate Geometric Median Descent . In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol.  151) , Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (Eds.). PMLR, 11145–11168. https://proceedings.mlr.press/v151/acharya22a.html Anish Acharya, Abolfazl Hashemi, Prateek Jain, Sujay Sanghavi, Inderjit S. Dhillon, and Ufuk Topcu. 2022. Robust Training in High Dimensions via Block Coordinate Geometric Median Descent. In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol.  151), Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (Eds.). PMLR, 11145–11168. https://proceedings.mlr.press/v151/acharya22a.html

5. Cybersecurity threats and their mitigation approaches using Machine Learning—A Review;Ahsan Mostofa;Journal of Cybersecurity and Privacy,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TrustDDL: A Privacy-Preserving Byzantine-Robust Distributed Deep Learning Framework;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W);2024-06-24

2. Improved Intrusion Detection System using Machine Learning Techniques;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

3. Fundamentals of Robust Machine Learning;Machine Learning: Foundations, Methodologies, and Applications;2024

4. Robust and Private Federated Learning on LLMs;Large Language Models in Cybersecurity;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3