Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization

Author:

Lange Robert1ORCID,Schaul Tom2ORCID,Chen Yutian2ORCID,Lu Chris3ORCID,Zahavy Tom2ORCID,Dalibard Valentin2ORCID,Flennerhag Sebastian2ORCID

Affiliation:

1. Technical Univ. Berlin, Berlin, Germany

2. Google DeepMind, London, United Kingdom

3. University of Oxford, Oxford, United Kingdom

Publisher

ACM

Reference45 articles.

1. Marcin Andrychowicz , Misha Denil , Sergio Gomez , Matthew W Hoffman , David Pfau , Tom Schaul , Brendan Shillingford , and Nando De Freitas . 2016. Learning to learn by gradient descent by gradient descent. Advances in neural information processing systems 29 ( 2016 ). Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning to learn by gradient descent by gradient descent. Advances in neural information processing systems 29 (2016).

2. Sebastian Pineda Arango , Hadi S Jomaa , Martin Wistuba , and Josif Grabocka . 2021 . Hpo-b: A large-scale reproducible benchmark for black-box hpo based on openml. arXiv preprint arXiv:2106.06257 (2021). Sebastian Pineda Arango, Hadi S Jomaa, Martin Wistuba, and Josif Grabocka. 2021. Hpo-b: A large-scale reproducible benchmark for black-box hpo based on openml. arXiv preprint arXiv:2106.06257 (2021).

3. Samy Bengio , Yoshua Bengio , Jocelyn Cloutier , and Jan Gescei . 1992. On the optimization of a synaptic learning rule . In Optimality in Biological and Artificial Networks? Routledge , 281--303. Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gescei. 1992. On the optimization of a synaptic learning rule. In Optimality in Biological and Artificial Networks? Routledge, 281--303.

4. James Bradbury , Roy Frostig , Peter Hawkins , Matthew James Johnson , Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018 . JAX: composable transformations of Python +NumPy programs. (2018). http://github.com/google/jax James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy programs. (2018). http://github.com/google/jax

5. Yutian Chen , Matthew W. Hoffman , Sergio Gómez Colmenarejo , Misha Denil , Timothy P. Lillicrap , Matt Botvinick , and Nando de Freitas . 2017 . Learning to Learn without Gradient Descent by Gradient Descent . In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.) , Vol. 70 . PMLR, 748--756. https://proceedings.mlr.press/v70/chen17e.html Yutian Chen, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, and Nando de Freitas. 2017. Learning to Learn without Gradient Descent by Gradient Descent. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 748--756. https://proceedings.mlr.press/v70/chen17e.html

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Evolution Transformer: In-Context Evolutionary Optimization;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

3. Accelerate Evolution Strategy by Proximal Policy Optimization;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. Auto-configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement Learning;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

5. RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3