Optimal Polynomial-time Compression for Boolean Max CSP

Author:

Jansen Bart M. P.1,Włodarczyk Michał1

Affiliation:

1. Eindhoven University of Technology, The Netherlands

Abstract

In the Boolean maximum constraint satisfaction problem – Max CSP ( Γ ) – one is given a collection of weighted applications of constraints from a finite constraint language  Γ , over a common set of variables, and the goal is to assign Boolean values to the variables so that the total weight of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard. We study the NP-hard cases through the lens of kernelization and provide a complete characterization of  Max CSP ( Γ ) with respect to the optimal compression size. Namely, we prove that Max CSP ( Γ ) parameterized by the number of variables  n is either polynomial-time solvable, or there exists an integer d ≥ 2 depending on Γ , such that: (1) An instance of Max CSP ( Γ ) can be compressed into an equivalent instance with \(\mathcal {O}(n^d\log n) \) bits in polynomial time, (2) Max CSP( Γ ) does not admit such a compression to \(\mathcal {O}(n^{d-\varepsilon }) \) bits unless NP⊆co-NP/poly. Our reductions are based on interpreting constraints as multilinear polynomials combined with the framework of ‘constraint implementations’, formerly used in the context of APX-hardness. As another application of our reductions, we reveal tight connections between optimal running times for solving Max CSP( Γ ) . More precisely, we show that obtaining a running time of the form \(\mathcal {O}(2^{(1-\varepsilon)n}) \) for particular classes of Max CSP s is as hard as breaching this barrier for Max d - SAT for some d .

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Reference36 articles.

1. Josh Alman and Virginia Vassilevska Williams . 2020 . OV Graphs Are (Probably) Hard Instances . In Proceedings of the 11th Innovations in Theoretical Computer Science Conference, ITCS 2020(Leibniz International Proceedings in Informatics (LIPIcs), Vol.  151) , Thomas Vidick (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 83:1–83:18. https://doi.org/10.4230/LIPIcs.ITCS. 2020.83 10.4230/LIPIcs.ITCS.2020.83 Josh Alman and Virginia Vassilevska Williams. 2020. OV Graphs Are (Probably) Hard Instances. In Proceedings of the 11th Innovations in Theoretical Computer Science Conference, ITCS 2020(Leibniz International Proceedings in Informatics (LIPIcs), Vol.  151), Thomas Vidick (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 83:1–83:18. https://doi.org/10.4230/LIPIcs.ITCS.2020.83

2. Solving MAX-r-SAT Above a Tight Lower Bound

3. Representing Boolean functions as polynomials modulo composite numbers

4. Richard Beigel . 1993 . The Polynomial Method in Circuit Complexity . In Proceedings of the Eighth Annual Structure in Complexity Theory Conference. IEEE Computer Society, 82–95 . https://doi.org/10.1109/SCT.1993.336538 10.1109/SCT.1993.336538 Richard Beigel. 1993. The Polynomial Method in Circuit Complexity. In Proceedings of the Eighth Annual Structure in Complexity Theory Conference. IEEE Computer Society, 82–95. https://doi.org/10.1109/SCT.1993.336538

5. Karl Bringmann , Nick Fischer , and Marvin Künnemann . 2019 . A Fine-Grained Analogue of Schaefer’s Theorem in P: Dichotomy of Existsk-Forall-Quantified First-Order Graph Properties . In Proceedings of the 34th Computational Complexity Conference, CCC 2019(Leibniz International Proceedings in Informatics (LIPIcs), Vol.  137) , Amir Shpilka (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–31:27. https://doi.org/10.4230/LIPIcs.CCC. 2019.31 10.4230/LIPIcs.CCC.2019.31 Karl Bringmann, Nick Fischer, and Marvin Künnemann. 2019. A Fine-Grained Analogue of Schaefer’s Theorem in P: Dichotomy of Existsk-Forall-Quantified First-Order Graph Properties. In Proceedings of the 34th Computational Complexity Conference, CCC 2019(Leibniz International Proceedings in Informatics (LIPIcs), Vol.  137), Amir Shpilka (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–31:27. https://doi.org/10.4230/LIPIcs.CCC.2019.31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3