1. Josh Alman and Virginia Vassilevska Williams . 2020 . OV Graphs Are (Probably) Hard Instances . In Proceedings of the 11th Innovations in Theoretical Computer Science Conference, ITCS 2020(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 151) , Thomas Vidick (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 83:1–83:18. https://doi.org/10.4230/LIPIcs.ITCS. 2020.83 10.4230/LIPIcs.ITCS.2020.83 Josh Alman and Virginia Vassilevska Williams. 2020. OV Graphs Are (Probably) Hard Instances. In Proceedings of the 11th Innovations in Theoretical Computer Science Conference, ITCS 2020(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 151), Thomas Vidick (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 83:1–83:18. https://doi.org/10.4230/LIPIcs.ITCS.2020.83
2. Solving MAX-r-SAT Above a Tight Lower Bound
3. Representing Boolean functions as polynomials modulo composite numbers
4. Richard Beigel . 1993 . The Polynomial Method in Circuit Complexity . In Proceedings of the Eighth Annual Structure in Complexity Theory Conference. IEEE Computer Society, 82–95 . https://doi.org/10.1109/SCT.1993.336538 10.1109/SCT.1993.336538 Richard Beigel. 1993. The Polynomial Method in Circuit Complexity. In Proceedings of the Eighth Annual Structure in Complexity Theory Conference. IEEE Computer Society, 82–95. https://doi.org/10.1109/SCT.1993.336538
5. Karl Bringmann , Nick Fischer , and Marvin Künnemann . 2019 . A Fine-Grained Analogue of Schaefer’s Theorem in P: Dichotomy of Existsk-Forall-Quantified First-Order Graph Properties . In Proceedings of the 34th Computational Complexity Conference, CCC 2019(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 137) , Amir Shpilka (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–31:27. https://doi.org/10.4230/LIPIcs.CCC. 2019.31 10.4230/LIPIcs.CCC.2019.31 Karl Bringmann, Nick Fischer, and Marvin Künnemann. 2019. A Fine-Grained Analogue of Schaefer’s Theorem in P: Dichotomy of Existsk-Forall-Quantified First-Order Graph Properties. In Proceedings of the 34th Computational Complexity Conference, CCC 2019(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 137), Amir Shpilka (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–31:27. https://doi.org/10.4230/LIPIcs.CCC.2019.31