A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption

Author:

Yu Zhiwei, Z.Y.1ORCID,Crane Cory, C.C.2ORCID,Chen Linlin, L.C.3ORCID,Testa Maria, M.T.4ORCID,Zheng Zhi, Z.Z.1ORCID

Affiliation:

1. Department of Biomedical Engineering, Rochester Institute of Technology, U.S.A

2. College of Health Science and Technology, Rochester Institute of Technology, U.S.A

3. College of Science, Rochester Institute of Technology, U.S.A

4. Department of Psychology, University of Buffalo, U.S.A

Abstract

This work introduced a novel analysis method to estimate interaction intensity, i.e., the level of positivity/negativity of an interaction, for intimate couples (married and heterosexual) under the impact of alcohol, which has great influences on behavioral health. Non-verbal behaviors are critical in interpersonal interactions. However, whether computer vision-detected non-verbal behaviors can effectively estimate interaction intensity of intimate couples is still unexplored. In this work, we proposed novel measurements and investigated their feasibility to estimate interaction intensities through machine learning regression models. Analyses were conducted based on a conflict-resolution conversation video dataset of intimate couples before and after acute alcohol consumption. Results showed the estimation error was at the lowest in the no-alcohol state but significantly increased if the model trained using no-alcohol data was applied to after-alcohol data, indicating that alcohol altered the interaction data in the feature space. While training a model using rich after-alcohol data is ideal to address the performance decrease, data collection in such a risky state is challenging in real life. Thus, we proposed a new State-Induced Domain Adaptation (SIDA) framework, which allows for improving estimation performance using only a small after-alcohol training dataset, pointing to a future direction of addressing data scarcity issues.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3