Affiliation:
1. Google, Mountain View, CA,
Abstract
We describe the timely dataflow model for distributed computation and its implementation in the Naiad system. The model supports stateful iterative and incremental computations. It enables both low-latency stream processing and high-throughput batch processing, using a new approach to coordination that combines asynchronous and fine-grained synchronous execution. We describe two of the programming frameworks built on Naiad: GraphLINQ for parallel graph processing, and differential dataflow for nested iterative and incremental computations. We show that a general-purpose system can achieve performance that matches, and sometimes exceeds, that of specialized systems.
Publisher
Association for Computing Machinery (ACM)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献