Passage retrieval revisited

Author:

Kaszkiel Marcin1,Zobel Justin1

Affiliation:

1. Department of Computer Science, RMIT, GPO Box 2476V, Melbourne 3001, Australia

Abstract

Ranking based on passages addresses some of the shortcomings of whole-document ranking. It provides convenient units of text to return to the user, avoids the difficulties of comparing documents of different length, and enables identification of short blocks of relevant material amongst otherwise irrelevant text. In this paper we explore the potential of passage retrieval, based on an experimental evaluation of the ability of passages to identify relevant documents. We compare our scheme of arbitrary passage retrieval to several other document retrieval and passage retrieval methods; we show experimentally that, compared to these methods, ranking via fixed-length passages is robust and effective. Our experiments also show that, compared to whole-document ranking, ranking via fixed-length arbitrary passages significantly improves retrieval effectiveness, by 8% for TREC disks 2 and 4 and by 18%-37% for the Federal Register collection.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Management Information Systems

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passage-aware Search Result Diversification;ACM Transactions on Information Systems;2024-05-13

2. Intent-Oriented Dynamic Interest Modeling for Personalized Web Search;ACM Transactions on Information Systems;2024-02-09

3. Summary in Action: A Trade-Off Between Effectiveness and Efficiency in Multidimensional Relevance Estimation;2023 IEEE International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2023-10-26

4. AgAsk: an agent to help answer farmer’s questions from scientific documents;International Journal on Digital Libraries;2023-06-19

5. Transformers for Tabular Data Representation: A Survey of Models and Applications;Transactions of the Association for Computational Linguistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3