Go-to-Controller is Better: Efficient and Optimal LPM Caching with Splicing

Author:

Gozlan Itamar1ORCID,Avin Chen1ORCID,Einziger Gil1ORCID,Scalosub Gabriel1ORCID

Affiliation:

1. Ben-Gurion University of the Negev, Beer Sheva, Israel

Abstract

Modern data center networks are required to support huge and complex forwarding policies as they handle the traffic of the various tenants. However, these policies cannot be stored in their entirety within the limited memory available at commodity switches. The common approach in such scenarios is to have SDN controllers manage the memory available at the switch as a fast cache, updating and changing the forwarding rules in the cache according to the workloads dynamics and the global policy at hand. Many such policies, such as Longest-prefix-match (LPM) policies, introduce dependencies between the forwarding rules. Ensuring that the cache content is always consistent with the global policy often requires the switch to store (potentially many) superfluous rules, which may lead to suboptimal performance in terms of delay and throughput. To overcome these deficiencies, previous work suggested the concept of splicing, where modified Go-to-Controller rules can be inserted into the cache to improve performance while maintaining consistency. These works focused mostly on heuristics, and it was conjectured that the problem is computationally intractable. As our main result, we show that the problem of determining the optimal set of rules, with splicing, can actually be solved efficiently by presenting a polynomial-time algorithm that produces an optimal solution, i.e., for a given cache size we find an optimal set of rules, some of which are go-to-controller, which maximize the total weight of the cache while maintaining consistency. However, such optimality comes at a cost, encompassed by the fact that our algorithm has a significantly larger running time than SoTA solutions which do not employ splicing. Therefore, we further present a heuristic exhibiting close-to-optimal performance, with significantly improved running time, matching that of the best algorithm, which does not employ splicing. In addition, we present the results of an evaluation study that compares the performance of our solutions with that of SoTA approaches, showing that splicing can reduce the cache miss ratio by as much as 30%, without increasing the cache size. Lastly, we propose a simple and fast-to-compute metric (that is consistency-oblivious) in order to evaluate the potential benefits of splicing compared to classical LPM-caching, for a given policy and traffic distribution. We show that our metric is highly correlated with such benefits, thus serving as an indication of whether splicing should be incorporated within the system architecture.

Funder

Israeli Innovation Authority

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Go-to-Controller is Better: Efficient and Optimal LPM Caching with Splicing;ACM SIGMETRICS Performance Evaluation Review;2023-06-26

2. Go-to-Controller is Better: Efficient and Optimal LPM Caching with Splicing;Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3