(Leveled) Fully Homomorphic Encryption without Bootstrapping

Author:

Brakerski Zvika1,Gentry Craig2,Vaikuntanathan Vinod3

Affiliation:

1. Weizmann Institute of Science

2. IBM Research

3. MIT and University of Toronto

Abstract

We present a novel approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled, fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits of a-priori bounded depth), without Gentry’s bootstrapping procedure. Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or Ring LWE (RLWE) problems that have 2 λ security against known attacks. We construct the following. (1) A leveled FHE scheme that can evaluate depth- L arithmetic circuits (composed of fan-in 2 gates) using O ( λ . L 3) per-gate computation, quasilinear in the security parameter. Security is based on RLWE for an approximation factor exponential in L . This construction does not use the bootstrapping procedure. (2) A leveled FHE scheme that can evaluate depth- L arithmetic circuits (composed of fan-in 2 gates) using O ( λ 2) per-gate computation, which is independent of L . Security is based on RLWE for quasipolynomial factors. This construction uses bootstrapping as an optimization. We obtain similar results for LWE, but with worse performance. All previous (leveled) FHE schemes required a per-gate computation of Ω ( λ 3.5), and all of them relied on subexponential hardness assumptions. We introduce a number of further optimizations to our scheme based on the Ring LWE assumption. As an example, for circuits of large width (e.g., where a constant fraction of levels have width Ω ( λ )), we can reduce the per-gate computation of the bootstrapped version to O ( λ ), independent of L , by batching the bootstrapping operation. At the core of our construction is a new approach for managing the noise in lattice-based ciphertexts, significantly extending the techniques of Brakerski and Vaikuntanathan [2011b].

Funder

Defense Advanced Research Projects Agency

Simons Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 1266 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3