Event Detection via Context Understanding Based on Multi-task Learning

Author:

Xia Jing,Li Xiaolong1,Tan Yongbin,Zhang Wu1,Li Dajun,Xiong Zhengkun1

Affiliation:

1. East China University of Technology, China

Abstract

Event detection(ED) aims to identify events of interest described in the text. With the current explosive growth of text data on the internet, ED is increasingly practical and has gained many researchers’ attention. The existing works usually design ED as a token-level multi-class classification task. In this setting, given a sentence, ED models’ prediction for each token is relatively independent and thus can not fully utilize sentence-level information and the association relations between multiple events in this sentence. To handle these situations, this paper proposes a multi-task learning based event detection model, which introduces an event type oriented text classification as an auxiliary task to improve the model’s understanding of sentence-level information. In addition, this model utilizes a Conditional Random Field(CRF) to explore the correlations between various event types and constrain the model’s output space. Experimental comparisons with state-of-the-art baselines on DuEE dataset demonstrate the model’s effectiveness.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference26 articles.

1. Yubo Chen , Liheng Xu , Kang Liu , Daojian Zeng , and Jun Zhao . 2015. Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks . In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) . Association for Computational Linguistics , Beijing, China , 167–176. https://doi.org/10.3115/v1/P15-1017 Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China, 167–176. https://doi.org/10.3115/v1/P15-1017

2. Collective Event Detection via a Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms

3. Shiyao Cui , Bowen Yu , Tingwen Liu , Zhenyu Zhang , Xuebin Wang , and Jinqiao Shi . 2020. Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation. arXiv:2002.10757 [cs](Sept . 2020 ). http://arxiv.org/abs/2002.10757 arXiv: 2002.10757. Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang, Xuebin Wang, and Jinqiao Shi. 2020. Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation. arXiv:2002.10757 [cs](Sept. 2020). http://arxiv.org/abs/2002.10757 arXiv: 2002.10757.

4. Revisiting Pre-Trained Models for Chinese Natural Language Processing

5. Jacob Devlin , Ming-Wei Chang , Kenton Lee , and Kristina Toutanova . 2019 . BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs] (May 2019). http://arxiv.org/abs/1810.04805 arXiv: 1810.04805. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs] (May 2019). http://arxiv.org/abs/1810.04805 arXiv: 1810.04805.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3