LIT: Lightning-fast In-memory Temporal Indexing

Author:

Christodoulou George1ORCID,Bouros Panagiotis2ORCID,Mamoulis Nikos3ORCID

Affiliation:

1. Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands

2. Institute of Computer Science, Johannes Gutenberg University Mainz, Mainz, Germany

3. Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece

Abstract

We study the problem of temporal database indexing, i.e., indexing versions of a database table in an evolving database. With the larger and cheaper memory chips nowadays, we can afford to keep track of all versions of an evolving table in memory. This raises the question of how to index such a table effectively. We depart from the classic indexing approach, where both current (i.e., live) and past (i.e., dead) data versions are indexed in the same data structure, and propose LIT, a hybrid index, which decouples the management of the current and past states of the indexed column. LIT includes optimized indexing modules for dead and live records, which support efficient queries and updates, and gracefully combines them. We experimentally show that LIT is orders of magnitude faster than the state-of-the-art temporal indices. Furthermore, we demonstrate that LIT uses linear space to the number of record indexed versions, making it suitable for main-memory temporal data management.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3