VPA: Fully Test-Time Visual Prompt Adaptation

Author:

Sun Jiachen1ORCID,Ibrahim Mark2ORCID,Hall Melissa2ORCID,Evtimov Ivan3ORCID,Mao Z. Morley1ORCID,Ferrer Cristian Canton3ORCID,Hazirbas Caner2ORCID

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. Meta AI, New York, NY, USA

3. Meta AI, Seattle, WA, USA

Funder

NSF (National Science Foundation)

National AI Institute for Edge Computing Leveraging Next Generation Wireless Networks

Publisher

ACM

Reference68 articles.

1. 2022. Machine learning inference during deployment. https: //learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best- practices/ml-deployment-inference#batch-inference. 2022. Machine learning inference during deployment. https: //learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best- practices/ml-deployment-inference#batch-inference.

2. 2022. Random Cropping in Pytorch. https://pytorch.org/vision/main/generated/ torchvision.transforms.RandomCrop.html. 2022. Random Cropping in Pytorch. https://pytorch.org/vision/main/generated/ torchvision.transforms.RandomCrop.html.

3. Hyojin Bahng , Ali Jahanian , Swami Sankaranarayanan , and Phillip Isola . 2022. Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274 , Vol. 1 , 3 ( 2022 ), 4. Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. 2022. Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274, Vol. 1, 3 (2022), 4.

4. Andrei Barbu , David Mayo , Julian Alverio , William Luo , Christopher Wang , Dan Gutfreund , Josh Tenenbaum , and Boris Katz . 2019. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models . In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc , E. Fox, and R. Garnett (Eds.), Vol. 32 . Curran Associates, Inc. https://proceedings.neurips.cc/paper/ 2019 /file/97af07a14cacba681feacf3012730892-Paper.pdf Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and Boris Katz. 2019. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf

5. Towards Evaluating the Robustness of Neural Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3