1. 2022. Machine learning inference during deployment. https: //learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best- practices/ml-deployment-inference#batch-inference. 2022. Machine learning inference during deployment. https: //learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best- practices/ml-deployment-inference#batch-inference.
2. 2022. Random Cropping in Pytorch. https://pytorch.org/vision/main/generated/ torchvision.transforms.RandomCrop.html. 2022. Random Cropping in Pytorch. https://pytorch.org/vision/main/generated/ torchvision.transforms.RandomCrop.html.
3. Hyojin Bahng , Ali Jahanian , Swami Sankaranarayanan , and Phillip Isola . 2022. Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274 , Vol. 1 , 3 ( 2022 ), 4. Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. 2022. Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274, Vol. 1, 3 (2022), 4.
4. Andrei Barbu , David Mayo , Julian Alverio , William Luo , Christopher Wang , Dan Gutfreund , Josh Tenenbaum , and Boris Katz . 2019. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models . In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc , E. Fox, and R. Garnett (Eds.), Vol. 32 . Curran Associates, Inc. https://proceedings.neurips.cc/paper/ 2019 /file/97af07a14cacba681feacf3012730892-Paper.pdf Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and Boris Katz. 2019. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
5. Towards Evaluating the Robustness of Neural Networks