1. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results;Tarvainen A.;Advances in Neural Information Processing Systems,2017
2. Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation
3. H. Basak , R. Bhattacharya , R. Hussain , and A. Chatterjee . An embarrassingly simple consistency regularization method for semi-supervised medical image segmentation. arXiv preprint arXiv:2202.00677 , 2022 . H. Basak, R. Bhattacharya, R. Hussain, and A. Chatterjee. An embarrassingly simple consistency regularization method for semi-supervised medical image segmentation. arXiv preprint arXiv:2202.00677, 2022.
4. O. Bernard , A. Lalande , C. Zotti , F. Cervenansky , X. Yang , P. Heng , I. Cetin , K. Lekadir , O. Camara , and M. Ballester . Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE transactions on medical imaging, 37(11):2514--2525 , 2018 . O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P. Heng, I. Cetin, K. Lekadir, O. Camara, and M. Ballester. Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE transactions on medical imaging, 37(11):2514--2525, 2018.
5. H. Cao , Y. Wang , J. Chen , D. Jiang , X. Zhang , Q. Tian , and M. Wang . Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 , 2021 . H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537, 2021.