1. A review of uncertainty quantification in deep learning: Techniques, applications and challenges
2. Galen Andrew , Raman Arora , Jeff Bilmes , and Karen Livescu . 2013 . Deep canonical correlation analysis . In International conference on machine learning. PMLR, 1247--1255 . Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. 2013. Deep canonical correlation analysis. In International conference on machine learning. PMLR, 1247--1255.
3. Javier Antorán , James Allingham , and José Miguel Hernández-Lobato . 2020. Depth uncertainty in neural networks. Advances in neural information processing systems , Vol. 33 ( 2020 ), 10620--10634. Javier Antorán, James Allingham, and José Miguel Hernández-Lobato. 2020. Depth uncertainty in neural networks. Advances in neural information processing systems, Vol. 33 (2020), 10620--10634.
4. John Arevalo , Thamar Solorio , Manuel Montes-y Gómez, and Fabio A González . 2017 . Gated multimodal units for information fusion. arXiv preprint arXiv:1702.01992 (2017). John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A González. 2017. Gated multimodal units for information fusion. arXiv preprint arXiv:1702.01992 (2017).
5. Tadas Baltruvs aitis, Chaitanya Ahuja , and Louis-Philippe Morency . 2018. Multimodal machine learning: A survey and taxonomy . IEEE transactions on pattern analysis and machine intelligence, Vol. 41 , 2 ( 2018 ), 423--443. Tadas Baltruvs aitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2018. Multimodal machine learning: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, Vol. 41, 2 (2018), 423--443.