Exterminator

Author:

Novark Gene1,Berger Emery D.1,Zorn Benjamin G.2

Affiliation:

1. University of Massachusetts, Amherst, MA

2. Microsoft Research, Redmond, WA

Abstract

Programs written in C and C++ are susceptible to memory errors, including buffer overflows and dangling pointers. These errors, which can lead to crashes, erroneous execution, and security vulnerabilities, are notoriously costly to repair. Tracking down their location in the source code is difficult, even when the full memory state of the program is available. Once the errors are finally found, fixing them remains challenging: even for critical security-sensitive bugs, the average time between initial reports and the issuance of a patch is nearly 1 month. We present Exterminator, a system that automatically corrects heap-based memory errors without programmer intervention. Exterminator exploits randomization to pinpoint errors with high precision. From this information, Exterminator derives runtime patches that fix these errors both in current and subsequent executions. In addition, Exterminator enables collaborative bug correction by merging patches generated by multiple users. We present analytical and empirical results that demonstrate Exterminator's effectiveness at detecting and correcting both injected and real faults.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Quality and Security of IoT Software Systems Using Cloud-Based Vulnerability Detector;Lecture Notes in Networks and Systems;2022

2. Multi-Variant eXecution: State-of-the-Art and Research Challenges;2020 12th International Conference on Communication Software and Networks (ICCSN);2020-06

3. Angelix;Proceedings of the 38th International Conference on Software Engineering;2016-05-14

4. Safe Memory-Leak Fixing for C Programs;2015 IEEE/ACM 37th IEEE International Conference on Software Engineering;2015-05

5. DirectFix: Looking for Simple Program Repairs;2015 IEEE/ACM 37th IEEE International Conference on Software Engineering;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3