Empirical study of optimization techniques for massive slicing

Author:

Binkley David1,Harman Mark2,Krinke Jens3

Affiliation:

1. Loyola College in Maryland, Baltimore, MD

2. King's College London, London, UK

3. FernUniversität in Hagen, Hagen, Germany

Abstract

This article presents results from a study of techniques that improve the performance of graph-based interprocedural slicing of the System Dependence Graph (SDG). This is useful in “massive slicing” where slices are required for many or all of the possible set of slicing criteria. Several different techniques are considered, including forming strongly connected components, topological sorting, and removing transitive edges. Data collected from a test bed of just over 1,000,000 lines of code are presented. This data illustrates the impact on computation time of the techniques. Together, the best combination produces a 71% reduction in run-time (and a 64% reduction in memory usage). The complete set of techniques also illustrates the point at which faster computation is not viable due to prohibitive preprocessing costs.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutation Testing in Evolving Systems: Studying the Relevance of Mutants to Code Evolution;ACM Transactions on Software Engineering and Methodology;2023-01-31

2. MuDelta: Delta-Oriented Mutation Testing at Commit Time;2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE);2021-05

3. Reverb;Proceedings of the ACM Symposium on Cloud Computing;2019-11-20

4. Pragmatic source code reuse via execution record and replay;Journal of Software: Evolution and Process;2016-05-10

5. Comparison of Backward Slicing Techniques for Java;IEICE Transactions on Information and Systems;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3