1. Samuel M Allen and John W Cahn . 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta metallurgica 27, 6 ( 1979 ), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 Samuel M Allen and John W Cahn. 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta metallurgica 27, 6 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2
2. Chao-Nien Chen and Vittorio Coti Zelati. 2020. Traveling wave solutions to the Allen-Cahn equation. arXiv preprint arXiv:2003.08248(2020). https://doi.org/10.1016/j.anihpc.2014.03.005 Chao-Nien Chen and Vittorio Coti Zelati. 2020. Traveling wave solutions to the Allen-Cahn equation. arXiv preprint arXiv:2003.08248(2020). https://doi.org/10.1016/j.anihpc.2014.03.005
3. Zlatinka I Dimitrova and Nikolay K Vitanov . 2021. Travelling waves connected to blood flow and motion of arterial walls . In Water in Biomechanical and Related Systems . Springer , 243–263. https://doi.org/10.1007/978-3-030-67227-0_12 Zlatinka I Dimitrova and Nikolay K Vitanov. 2021. Travelling waves connected to blood flow and motion of arterial walls. In Water in Biomechanical and Related Systems. Springer, 243–263. https://doi.org/10.1007/978-3-030-67227-0_12
4. SOME ENTIRE SOLUTIONS OF THE ALLEN–CAHN EQUATION
5. Changfeng Gui and Mingfeng Zhao . 2015. Traveling wave solutions of Allen–Cahn equation with a fractional Laplacian . In Annales de l ’Institut Henri Poincaré C, Analyse non linéaire, Vol. 32. Elsevier , 785–812. https://doi.org/10.1016/j.anihpc. 2014 .03.005 Changfeng Gui and Mingfeng Zhao. 2015. Traveling wave solutions of Allen–Cahn equation with a fractional Laplacian. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, Vol. 32. Elsevier, 785–812. https://doi.org/10.1016/j.anihpc.2014.03.005