Repetitive Patterns Recognition in Textures of Ancient Peruvian Pottery

Author:

Sepulveda Sebastian1ORCID,Bustos Benjamin1ORCID,Sipiran Ivan2ORCID

Affiliation:

1. IMFD, Department of Computer Science, University of Chile, Chile

2. Department of Computer Science, University of Chile, Chile

Abstract

We present a study and comparison of computer vision methods for the task of finding repetitive motifs in ancient Peruvian pottery. Under this context, the main difficulties for solving the task are that the motifs are in most cases highly repetitive, that the motifs corresponding to the same pattern are slightly different due to be hand-drawn, and that the amount of data available for training and testing purposes is scarce. We evaluate and compare several techniques: Template Matching, Segment Anything Model, Mask R-CNN, Faster R-CNN, RetinaNet, and YoloV8-s. We conclude that YoloV8-s and Retina-Net are the most effective techniques for the task, but the effectiveness for zero-shot detection is low for all evaluated techniques.

Publisher

Association for Computing Machinery (ACM)

Reference52 articles.

1. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up Robust Features. In Computer Vision – ECCV 2006, Aleš Leonardis, Horst Bischof, and Axel Pinz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 404–417.

2. Roberto Brunelli and T Poggiot. 1997. Template matching: Matched spatial filters and beyond. Pattern recognition 30, 5 (1997), 751–768.

3. Detecting, Grouping, and Structure Inference for Invariant Repetitive Patterns in Images

4. Cascade R-CNN: Delving Into High Quality Object Detection

5. Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. 2010. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision – ECCV 2010, Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 778–792.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3