Eluding ML-based Adblockers With Actionable Adversarial Examples
Author:
Affiliation:
1. University of California, Riverside, United States of America
2. University of California, Riverside, USA
3. Samsung Research America, USA
4. University of Iowa, USA
5. US Army Research Laboratory, USA
6. University of California, Davis, USA
Funder
National Science Foundation
U.S. Army Combat Capabilities Development Command
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3485832.3488008
Reference34 articles.
1. Zainul Abi Din Panagiotis Tigas Samuel T King and Benjamin Livshits. 2020. {PERCIVAL}: Making in-browser perceptual ad blocking practical with deep learning. In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20). 387–400. Zainul Abi Din Panagiotis Tigas Samuel T King and Benjamin Livshits. 2020. {PERCIVAL}: Making in-browser perceptual ad blocking practical with deep learning. In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20). 387–400.
2. How Tracking Companies Circumvented Ad Blockers Using WebSockets
3. Leveraging Machine Learning to Improve Unwanted Resource Filtering
4. Joan Bruna Christian Szegedy Ilya Sutskever Ian Goodfellow Wojciech Zaremba Rob Fergus and Dumitru Erhan. 2013. Intriguing properties of neural networks. (2013). Joan Bruna Christian Szegedy Ilya Sutskever Ian Goodfellow Wojciech Zaremba Rob Fergus and Dumitru Erhan. 2013. Intriguing properties of neural networks. (2013).
5. François Chollet 2015. Keras. https://keras.io. François Chollet 2015. Keras. https://keras.io.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AdCPG: Classifying JavaScript Code Property Graphs with Explanations for Ad and Tracker Blocking;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15
2. ASTrack: Automatic Detection and Removal of Web Tracking Code with Minimal Functionality Loss;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17
3. Adhere: Automated Detection and Repair of Intrusive Ads;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3