Quantum Machine Learning Algorithm for Knowledge Graphs

Author:

Ma Yunpu1,Tresp Volker2

Affiliation:

1. Ludwig Maximilian University of Munich

2. Ludwig Maximilian University of Munich & Siemens CT

Abstract

Semantic knowledge graphs are large-scale triple-oriented databases for knowledge representation and reasoning. Implicit knowledge can be inferred by modeling the tensor representations generated from knowledge graphs. However, as the sizes of knowledge graphs continue to grow, classical modeling becomes increasingly computationally resource intensive. This article investigates how to capitalize on quantum resources to accelerate the modeling of knowledge graphs. In particular, we propose the first quantum machine learning algorithm for inference on tensorized data, i.e., on knowledge graphs. Since most tensor problems are NP-hard [18], it is challenging to devise quantum algorithms to support the inference task. We simplify the modeling task by making the plausible assumption that the tensor representation of a knowledge graph can be approximated by its low-rank tensor singular value decomposition, which is verified by our experiments. The proposed sampling-based quantum algorithm achieves speedup with a polylogarithmic runtime in the dimension of knowledge graph tensor.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Fast computation of low-rank matrix approximations

2. Freebase

3. Antoine Bordes Nicolas Usunier Alberto Garcia-Duran Jason Weston and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems. 2787–2795. Antoine Bordes Nicolas Usunier Alberto Garcia-Duran Jason Weston and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems. 2787–2795.

4. The power of block-encoded matrix powers: Improved regression techniques via faster hamiltonian simulation;Chakraborty Shantanav;ICALP.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Workshop Summary: Quantum Machine Learning;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

2. Quantum Computing for Healthcare: A Review;Future Internet;2023-02-27

3. Evaluating Variational Quantum Circuit Designs for Knowledge Graph Completion;2022 IEEE International Conference on Quantum Computing and Engineering (QCE);2022-09

4. Quantum Version of the k‐NN Classifier Based on a Quantum Sorting Algorithm;Annalen der Physik;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3