Disk-tape joins

Author:

Myllymaki Jussi1,Livny Miron1

Affiliation:

1. Computer Sciences Department, University of Wisconsin-Madison

Abstract

Today large amounts of data are stored on tertiary storage media such as magnetic tapes and optical disks. DBMSs typically operate only on magnetic disks since they know how to maneuver disks and how to optimize accesses on them. Tertiary devices present a problem for DBMSs since these devices have dismountable media and have very different operational characteristics compared to magnetic disks. For instance, most tape drives offer very high capacity at low cost but are accessed sequentially, involve lengthy latencies, and deliver lower bandwidth. Typically, the scope of a DBMS's query optimizer does not include tertiary devices, and the DBMS might not even know how to control and operate upon tertiary-resident data. In a three-level hierarchy of storage devices (main memory, disk, tape), the typical solution is to elevate tape-resident data to disk devices, thus bringing such data into the DBMS' control, and then to perform the required operations on disk. This requires additional space on disk and may not give the lowest response time possible. With this challenge in mind, we studied the trade-offs between memory and disk requirements and the execution time of a join with the help of two well-known join methods. The conventional, disk-based Nested Block Join and Hybrid Hash Join were modified to operate directly on tapes. An experimental implementation of the modified algorithms gave us more insight into how the algorithms perform in practice. Our performance analysis shows that a DBMS desiring to operate on tertiary storage will benefit from special algorithms that operate directly on tape-resident data and take into account and exploit the mismatch in disk and tape characteristics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference10 articles.

1. Storage and access in relational data bases

2. Streaming tape drive control electronics;Culp B. W.;Hewlett-Packard J.,1988

3. Implementation techniques for main memory database systems

4. Tapes hold data, too

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Massive Storage Systems;Journal of Computer Science and Technology;2006-09

2. High Performance Virtual Backup and Archive System;Computational Science – ICCS 2006;2006

3. Scheduling Queries for Tape-Resident Data;Euro-Par 2000 Parallel Processing;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3