Scalable Linear Algebra on a Relational Database System

Author:

Luo Shangyu1,Gao Zekai J.1,Gubanov Michael2,Perez Luis L.1,Jermaine Christopher1

Affiliation:

1. Rice University

2. U. of Texas, San Antonio

Abstract

Scalable linear algebra is important for analytics and machine learning (including deep learning). In this paper, we argue that a parallel or distributed database system is actually an excellent platform upon which to build such functionality. Most relational systems already have support for cost-based optimization-which is vital to scaling linear algebra computations-and it is well-known how to make relational systems scale. We show that by making just a few changes to a parallel/distributed relational database system, such a system can be a competitive platform for scalable linear algebra. Our results suggest that brand new systems supporting scalable linear algebra are not absolutely necessary, and that such systems could instead be built on top of existing relational technology.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference25 articles.

1. Apache spark mllib: http://spark.apache.org/docs/latest/ mllib-data-types.html. Apache spark mllib: http://spark.apache.org/docs/latest/ mllib-data-types.html.

2. Oracle corporation: https://docs.oracle.com/cd/B19306_01/index.htm. Oracle corporation: https://docs.oracle.com/cd/B19306_01/index.htm.

3. LAPACK Users' Guide

4. Spark SQL

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. nsDB: Architecting the Next Generation Database by Integrating Neural and Symbolic Systems;Proceedings of the VLDB Endowment;2024-07

2. A survey on machine learning in array databases;Applied Intelligence;2022-08-12

3. On matrices and K-relations;Annals of Mathematics and Artificial Intelligence;2021-07-15

4. Expressive Power of Linear Algebra Query Languages;Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2021-06-20

5. HADAD: A Lightweight Approach for Optimizing Hybrid Complex Analytics Queries;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3