Target Faults for Test Compaction Based on Multicycle Tests

Author:

Pomeranz Irith1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

The use of multicycle tests, with several functional capture cycles between scan operations, contributes significantly to the ability to compact a test set. Multicycle tests have the added benefit that they can contribute to the detection of defects with complex behaviors that are not detected by single-cycle or two-cycle tests. To ensure that this benefit is materialized when test compaction is applied to transition faults, this article suggests to incorporate into the test compaction procedure an additional fault model whose fault coverage increases when multicycle tests are used. To ensure that the computational complexity of test compaction is not increased by a fault model with a large number of faults, or faults with complex behaviors, the added fault model is required to have the same characteristics as the transition fault model. A type of transition fault called unspecified transition fault satisfies these requirements. The article describes a test compaction procedure for transition faults that incorporates unspecified transition faults, and presents experimental results for benchmark circuits to demonstrate the levels of test compaction and fault coverage that can be achieved.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Logic Diagnosis Based on Deep Learning for Multiple Faults;2022 19th International SoC Design Conference (ISOCC);2022-10-19

2. Covering Test Holes of Functional Broadside Tests;ACM Transactions on Design Automation of Electronic Systems;2021-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3