Reliable and Energy-Efficient Communications in Mobile Robotic Networks by Collaborative Beamforming

Author:

He Min12ORCID,Chen Yali3ORCID,Liu Min456ORCID,Fan Xiaokun32ORCID,Zhu Yuchen32ORCID

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing China

4. network technology research center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing China

5. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing China

6. Zhongguancun Laboratory, Beijing China

Abstract

For mobile robotic networks in industrial scenarios, reliable and energy-efficient communications are crucial yet challenging. Fortunately, collaborative beamforming (CB) emerges as a promising solution, which can increase the transmission gain and reduce the transmit power of robots by constructing a mobile robot-enabled virtual antenna array (MRVAA). The performance of CB is tightly related to robot positions, necessitating proper robot selection. However, robot selection may expose the network to the risk of unbalanced energy distribution, reducing network lifetime. Additionally, the mobility and variable numbers of robots require flexible and scalable robot selection algorithms. To tackle these challenges, we first formulate a multi-objective optimization problem to reduce the maximum sidelobe level (MSLL) of MRVAA while minimizing the standard deviation of the network energy distribution (SDNED) by selecting robots for CB. Then, based on distributed multi-agent learning (MARL), we propose an effective and scalable robot selection algorithm with energy considered (RoSE) to solve the problem, where difference-rewards function (DRF) and policy sharing are designed for enhancing convergence rate and policy stability. Simulation results show that the RoSE has the scalability to positions and numbers of robots. Furthermore, RoSE surpasses existing selection algorithms in network lifetime and time efficiency, while still maintaining comparable MSLL.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3