Affiliation:
1. Université of Gustave Eiffel, LASTIG, Univ Gustave Eiffel, ENSG, IGN, Saint-Mande, France
Abstract
Spatial analysis and pattern recognition with vector spatial data is particularly useful to enrich raw data. In road networks, for instance, there are many patterns and structures that are implicit with only road line features, among which highway interchange appeared very complex to recognize with vector-based techniques. The goal is to find the roads that belong to an interchange, such as the slip roads and the highway roads connected to the slip roads. To go further than state-of-the-art vector-based techniques, this article proposes to use raster-based deep learning techniques to recognize highway interchanges. The contribution of this work is to study how to optimally convert vector data into small images suitable for state-of-the-art deep learning models. Image classification with a convolutional neural network (i.e., is there an interchange in this image or not?) and image segmentation with a u-net (i.e., find the pixels that cover the interchange) are experimented and give better results than existing vector-based techniques in this specific use case (99.5% against 74%).
Publisher
Association for Computing Machinery (ACM)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献