Comparing Clustering with Pairwise and Relative Constraints

Author:

Pei Yuanli1,Fern Xiaoli Z.1,Tjahja Teresa Vania1,Rosales Rómer2

Affiliation:

1. Oregon State University, Corvallis, OR

2. LinkedIn, Mountain View, CA

Abstract

Clustering can be improved with the help of side information about the similarity relationships among instances. Such information has been commonly represented by two types of constraints: pairwise constraints and relative constraints, regarding similarities about instance pairs and triplets, respectively. Prior work has mostly considered these two types of constraints separately and developed individual algorithms to learn from each type. In practice, however, it is critical to understand/compare the usefulness of the two types of constraints as well as the cost of acquiring them, which has not been studied before. This paper provides an extensive comparison of clustering with these two types of constraints. Specifically, we compare their impacts both on human users that provide such constraints and on the learning system that incorporates such constraints into clustering. In addition, to ensure that the comparison of clustering is performed on equal ground (without the potential bias introduced by different learning algorithms), we propose a probabilistic semi-supervised clustering framework that can learn from either type of constraints. Our experiments demonstrate that the proposed semi-supervised clustering framework is highly effective at utilizing both types of constraints to aid clustering. Our user study provides valuable insights regarding the impact of the constraints on human users, and our experiments on clustering with the human-labeled constraints reveal that relative constraint is often more efficient at improving clustering.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering;International Journal of Machine Learning and Cybernetics;2022-09-10

2. Consistency regularization for deep semi-supervised clustering with pairwise constraints;International Journal of Machine Learning and Cybernetics;2022-07-07

3. Semi-supervised clustering under a compact-cluster assumption;IEEE Transactions on Knowledge and Data Engineering;2022

4. A classification-based approach to semi-supervised clustering with pairwise constraints;Neural Networks;2020-07

5. Safety-aware Graph-based Semi-Supervised Learning;Expert Systems with Applications;2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3