DoubleChecker

Author:

Biswas Swarnendu1,Huang Jipeng1,Sengupta Aritra1,Bond Michael D.1

Affiliation:

1. Ohio State University

Abstract

Atomicity is a key correctness property that allows programmers to reason about code regions in isolation. However, programs often fail to enforce atomicity correctly, leading to atomicity violations that are difficult to detect. Dynamic program analysis can detect atomicity violations based on an atomicity specification, but existing approaches slow programs substantially. This paper presents DoubleChecker, a novel sound and precise atomicity checker whose key insight lies in its use of two new cooperating dynamic analyses. Its imprecise analysis tracks cross-thread dependences soundly but imprecisely with significantly better performance than a fully precise analysis. Its precise analysis is more expensive but only needs to process a subset of the execution identified as potentially involved in atomicity violations by the imprecise analysis. If DoubleChecker operates in single-run mode, the two analyses execute in the same program run, which guarantees soundness and precision but requires logging program accesses to pass from the imprecise to the precise analysis. In multi-run mode, the first program run executes only the imprecise analysis, and a second run executes both analyses. Multi-run mode trades accuracy for performance; each run of multi-run mode outperforms single-run mode, but can potentially miss violations. We have implemented DoubleChecker and an existing state-of-the-art atomicity checker called Velodrome in a high-performance Java virtual machine. DoubleChecker's single-run mode significantly outperforms Velodrome, while still providing full soundness and precision. DoubleChecker's multi-run mode improves performance further, without significantly impacting soundness in practice. These results suggest that DoubleChecker's approach is a promising direction for improving the performance of dynamic atomicity checking over prior work.

Funder

Division of Computer and Network Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Monitoring with Strong Trace Prefixes;Lecture Notes in Computer Science;2024

2. On interleaving space exploration of multi-threaded programs;Frontiers of Computer Science;2021-02-11

3. Transforming Threads into Actors: Learning Concurrency Structure from Execution Traces;Lecture Notes in Computer Science;2018

4. Robust programs with filtered iterators;Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering;2017-10-23

5. Verifying Atomicity Preservation and Deadlock Freedom of a Generic Shared Variable Mechanism Used in Model-To-Code Transformations;Communications in Computer and Information Science;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3